Стандарт Передачи Данных RS485
Egor (Обсуждение | вклад) | Boss (Обсуждение | вклад) | ||
Строка 1: | Строка 1: | ||
- | + | '''Стандарт RS-485''' совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов. На сегодняшний день, различные расширения стандарта RS-485 охватывают широкое разнообразие приложений, этот стандарт стал основой для создания целого семейства промышленных сетей широко используемых в промышленной автоматизации. | |
- | + | ||
- | Стандарт RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов. На сегодняшний день, различные расширения стандарта RS-485 охватывают широкое разнообразие приложений, этот стандарт стал основой для создания целого семейства промышленных сетей широко используемых в промышленной автоматизации. | + | |
В стандарте RS-485 для передачи и приёма данных часто используется единственная витая пара проводов. Передача данных осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль. | В стандарте RS-485 для передачи и приёма данных часто используется единственная витая пара проводов. Передача данных осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль. | ||
+ | |||
+ | RS-485 — стандарт физического уровня для асинхронного интерфейса. Регламентирует электрические параметры полудуплексной многоточечной дифференциальной линии связи типа «общая шина». | ||
+ | |||
+ | Стандарт приобрел большую популярность и стал основой для создания целого семейства промышленных сетей, широко используемых в промышленной автоматизации. | ||
+ | |||
+ | Стандарт RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов. | ||
+ | |||
+ | ==Технические характеристики интерфейса RS-485== | ||
+ | В стандарте RS-485 для передачи и приёма данных используется одна витая пара проводов, иногда сопровождаемая экранирующей оплеткой или общим проводом. Передача данных осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль. | ||
+ | |||
+ | Стандарт RS-485 оговаривает только электрические и временные характеристики интерфейса. | ||
+ | |||
+ | Стандарт RS-485 не оговаривает: | ||
+ | * параметры качества сигнала (допустимый уровень искажений, отражения в длинных линиях), | ||
+ | * типы соединителей и кабелей, | ||
+ | * гальваническую развязку линии связи, | ||
+ | * протокол обмена. | ||
+ | ==Электрические и временные характеристики интерфейса RS-485== | ||
+ | * До 32 приёмопередатчиков в одном сегменте сети. | ||
+ | * Максимальная длина одного сегмента сети: 1200 метров. | ||
+ | * Только один передатчик активный. | ||
+ | * Максимальное количество узлов в сети — 256 с учётом магистральных усилителей. | ||
+ | * Характеристика скорость обмена/длина линии связи: | ||
+ | **62,5 кбит/с 1200 м (одна витая пара), | ||
+ | **375 кбит/с 500 м (одна витая пара), | ||
+ | **500 кбит/с, | ||
+ | **1000 кбит/с, | ||
+ | **2400 кбит/с 100 м (две витых пары), | ||
+ | **10000 кбит/с 10 м. | ||
+ | Примечание: Скорости обмена 62,5 кбит/с, 375 кбит/с, 2400 кбит/с оговорены стандартом RS-485. На скоростях обмена свыше 500 кбит/с рекомендуется использовать экранированные витые пары. | ||
+ | |||
+ | Тип приёмопередатчиков — дифференциальный, потенциальный. Изменение входных и выходных напряжений на линиях A и B: Ua (Ub) от −7 В до +12 В (+7 В). | ||
+ | |||
+ | Требования, предъявляемые к выходному каскаду: — выходной каскад представляет собой источник напряжения с малым выходным сопротивлением, |Uвых|=1,5:5,0 В (не <1,5 В и не >6,0 В); | ||
+ | |||
+ | состояние логической «1»: Ua больше Ub (гистерезис 200 мВ) — MARK, OFF; | ||
+ | |||
+ | состояние логического «0»: Ua меньше Ub (гистерезис 200 мВ) — SPACE, ON (производители микросхем — драйверов, часто выбирают намного меньшие значения, гистерезис от 10 мВ[1][2]); | ||
+ | |||
+ | Bыходной каскад должен выдерживать режим короткого замыкания, иметь максимальный выходной ток 250 мА, скорость нарастания выходного сигнала 1,2 В/мкс и схему ограничения выходной мощности. | ||
+ | |||
+ | ==Требования, предъявляемые к входному каскаду== | ||
+ | *— входной каскад представляет собой дифференциальный вход с высоким входным сопротивлением и пороговой характеристикой от −200 мВ до +200 мВ: | ||
+ | * допустимый диапазон входных напряжений Uag (Ubg) относительно земли (GND) от −7 В до +12 В; | ||
+ | * входной сигнал представлен дифференциальным напряжением (Ui +0,2 В и более); | ||
+ | уровни состояния приёмника входного каскада — см. состояния передатчика выходного каскада. | ||
+ | ===Сигналы=== | ||
+ | Передача данных идёт по двум линиям, A и B. | ||
+ | Логическая единица: (A-B) > +200 мВ. | ||
+ | Логический ноль: (A-B) < −200 мВ. | ||
+ | |||
+ | В момент отсутствия активного передатчика на шине уровень сигнала в линиях не определен. Для предотвращения ситуации, когда разница между входами A и B меньше 200 мВ (неопределённое состояние), иногда применяется смещение с помощью резисторов или специальной схемы. Если состояние линий не определено, то приёмники могут принимать сигнал помехи. Некоторые протоколы предусматривают передачу служебных последовательностей для стабилизации приёмников и уверенного начала приёма. | ||
+ | |||
+ | Интерфейс является полудуплексным: узел не может одновременно и принимать, и передавать данные. | ||
+ | |||
+ | ===Согласование=== | ||
+ | |||
+ | При большой длине линии связи возникают эффекты длинных линий. Причина этому — распределенные индуктивные и ёмкостные свойства кабеля. Как следствие, сигнал, переданный в линию одним из узлов, начинает искажаться по мере распространения в линии, возникают сложные резонансные явления. Поскольку на практике кабель на всей длине имеет одинаковую конструкцию и, следовательно, одинаковые распределенные параметры погонной ёмкости и индуктивности, то это свойство кабеля характеризуют специальным параметром — волновым сопротивлением. Не вдаваясь в теоретические подробности, можно сказать, что в кабеле, на приёмном конце которого подключен резистор с сопротивлением, равным волновому сопротивлению кабеля, резонансные явления значительно ослабляются. Называется такой резистор терминатором. Для сетей RS485 они ставятся на каждой оконечности длинной линии (поскольку обе стороны могут быть приёмными). Волновое сопротивление наиболее распространенных витых пар CAT5 составляет 100 Ом[3]. Другие витые пары могут иметь волновое сопротивление 150 Ом и выше. Плоские ленточные кабели до 300 Ом. | ||
+ | |||
+ | На практике номинал этого резистора может выбираться и бóльшего номинала, чем волновое сопротивление кабеля, поскольку омическое сопротивление того же кабеля может оказаться настолько велико, что амплитуда сигнала на приёмной стороне окажется слишком мала для устойчивого приёма. В этом случае ищут компромисс между резонансными и амплитудными искажениями сигнала, уменьшая скорость интерфейса и увеличивая номинал терминатора[6][7][8]. На скоростях 9600 бит/с и ниже волновые, резонансные явления в масштабах, способных ухудшить качество связи, не проявляются, и вопроса согласовании линии не возникает. Даже более того, при низких скоростях передачи (менее 9600 бит/с) терминальный резистор не улучшает, а ухудшает надежность передачи[9]. | ||
+ | Ещё один источник искажения формы сигналов при передаче через витую пару — разная скорость распространения высокочастотного и низкочастотного сигнала (высокочастотная составляющая распространяется по витой паре несколько быстрее), что приводит к искажению формы сигнала при высоких скоростях передачи. | ||
+ | Помехи в линии связи зависят не только от длины, терминаторов и качества самой витой пары. Важно, чтобы линия связи последовательно обходила все приёмопередатчики (топология общей шины). Витая пара не должна иметь длинных отводов — отрезков кабеля для соединения с очередным узлом, кроме случая использования повторителей интерфейса, или при низких скоростях передачи, менее 9600 бит/с. | ||
+ | ===Подключение=== | ||
+ | *Контакты RS-485 | ||
+ | *Разъем состоит из двух или трех контактов: | ||
+ | A или «+» (TxD+/RxD+), неинвертированный[11]. | ||
+ | B или «−» (TxD-/RxD-), инвертированный. | ||
+ | |||
+ | Опциональный общий провод. Соединение общих шин устройств не обязательно, но улучшает устойчивость работы интерфейса. При наличии гальванической развязки не нужен. | ||
+ | ===Сетевые протоколы, использующие RS-485=== | ||
+ | *LanDrive | ||
+ | *ProfiBus DP | ||
+ | *ModBus | ||
+ | *DMX512 | ||
+ | *HDLC | ||
+ | ===Промышленные сети, построенные на основе RS-485=== | ||
+ | *LanDrive | ||
+ | *ProfiBus DP | ||
+ | *ModBus | ||
+ | |||
[[Категория:Термины]] | [[Категория:Термины]] |
Текущая версия на 15:33, 23 сентября 2015
Стандарт RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов. На сегодняшний день, различные расширения стандарта RS-485 охватывают широкое разнообразие приложений, этот стандарт стал основой для создания целого семейства промышленных сетей широко используемых в промышленной автоматизации.
В стандарте RS-485 для передачи и приёма данных часто используется единственная витая пара проводов. Передача данных осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль.
RS-485 — стандарт физического уровня для асинхронного интерфейса. Регламентирует электрические параметры полудуплексной многоточечной дифференциальной линии связи типа «общая шина».
Стандарт приобрел большую популярность и стал основой для создания целого семейства промышленных сетей, широко используемых в промышленной автоматизации.
Стандарт RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов.
Технические характеристики интерфейса RS-485
В стандарте RS-485 для передачи и приёма данных используется одна витая пара проводов, иногда сопровождаемая экранирующей оплеткой или общим проводом. Передача данных осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль.
Стандарт RS-485 оговаривает только электрические и временные характеристики интерфейса.
Стандарт RS-485 не оговаривает:
- параметры качества сигнала (допустимый уровень искажений, отражения в длинных линиях),
- типы соединителей и кабелей,
- гальваническую развязку линии связи,
- протокол обмена.
Электрические и временные характеристики интерфейса RS-485
- До 32 приёмопередатчиков в одном сегменте сети.
- Максимальная длина одного сегмента сети: 1200 метров.
- Только один передатчик активный.
- Максимальное количество узлов в сети — 256 с учётом магистральных усилителей.
- Характеристика скорость обмена/длина линии связи:
- 62,5 кбит/с 1200 м (одна витая пара),
- 375 кбит/с 500 м (одна витая пара),
- 500 кбит/с,
- 1000 кбит/с,
- 2400 кбит/с 100 м (две витых пары),
- 10000 кбит/с 10 м.
Примечание: Скорости обмена 62,5 кбит/с, 375 кбит/с, 2400 кбит/с оговорены стандартом RS-485. На скоростях обмена свыше 500 кбит/с рекомендуется использовать экранированные витые пары.
Тип приёмопередатчиков — дифференциальный, потенциальный. Изменение входных и выходных напряжений на линиях A и B: Ua (Ub) от −7 В до +12 В (+7 В).
Требования, предъявляемые к выходному каскаду: — выходной каскад представляет собой источник напряжения с малым выходным сопротивлением, |Uвых|=1,5:5,0 В (не <1,5 В и не >6,0 В);
состояние логической «1»: Ua больше Ub (гистерезис 200 мВ) — MARK, OFF;
состояние логического «0»: Ua меньше Ub (гистерезис 200 мВ) — SPACE, ON (производители микросхем — драйверов, часто выбирают намного меньшие значения, гистерезис от 10 мВ[1][2]);
Bыходной каскад должен выдерживать режим короткого замыкания, иметь максимальный выходной ток 250 мА, скорость нарастания выходного сигнала 1,2 В/мкс и схему ограничения выходной мощности.
Требования, предъявляемые к входному каскаду
- — входной каскад представляет собой дифференциальный вход с высоким входным сопротивлением и пороговой характеристикой от −200 мВ до +200 мВ:
- допустимый диапазон входных напряжений Uag (Ubg) относительно земли (GND) от −7 В до +12 В;
- входной сигнал представлен дифференциальным напряжением (Ui +0,2 В и более);
уровни состояния приёмника входного каскада — см. состояния передатчика выходного каскада.
Сигналы
Передача данных идёт по двум линиям, A и B. Логическая единица: (A-B) > +200 мВ. Логический ноль: (A-B) < −200 мВ.
В момент отсутствия активного передатчика на шине уровень сигнала в линиях не определен. Для предотвращения ситуации, когда разница между входами A и B меньше 200 мВ (неопределённое состояние), иногда применяется смещение с помощью резисторов или специальной схемы. Если состояние линий не определено, то приёмники могут принимать сигнал помехи. Некоторые протоколы предусматривают передачу служебных последовательностей для стабилизации приёмников и уверенного начала приёма.
Интерфейс является полудуплексным: узел не может одновременно и принимать, и передавать данные.
Согласование
При большой длине линии связи возникают эффекты длинных линий. Причина этому — распределенные индуктивные и ёмкостные свойства кабеля. Как следствие, сигнал, переданный в линию одним из узлов, начинает искажаться по мере распространения в линии, возникают сложные резонансные явления. Поскольку на практике кабель на всей длине имеет одинаковую конструкцию и, следовательно, одинаковые распределенные параметры погонной ёмкости и индуктивности, то это свойство кабеля характеризуют специальным параметром — волновым сопротивлением. Не вдаваясь в теоретические подробности, можно сказать, что в кабеле, на приёмном конце которого подключен резистор с сопротивлением, равным волновому сопротивлению кабеля, резонансные явления значительно ослабляются. Называется такой резистор терминатором. Для сетей RS485 они ставятся на каждой оконечности длинной линии (поскольку обе стороны могут быть приёмными). Волновое сопротивление наиболее распространенных витых пар CAT5 составляет 100 Ом[3]. Другие витые пары могут иметь волновое сопротивление 150 Ом и выше. Плоские ленточные кабели до 300 Ом.
На практике номинал этого резистора может выбираться и бóльшего номинала, чем волновое сопротивление кабеля, поскольку омическое сопротивление того же кабеля может оказаться настолько велико, что амплитуда сигнала на приёмной стороне окажется слишком мала для устойчивого приёма. В этом случае ищут компромисс между резонансными и амплитудными искажениями сигнала, уменьшая скорость интерфейса и увеличивая номинал терминатора[6][7][8]. На скоростях 9600 бит/с и ниже волновые, резонансные явления в масштабах, способных ухудшить качество связи, не проявляются, и вопроса согласовании линии не возникает. Даже более того, при низких скоростях передачи (менее 9600 бит/с) терминальный резистор не улучшает, а ухудшает надежность передачи[9]. Ещё один источник искажения формы сигналов при передаче через витую пару — разная скорость распространения высокочастотного и низкочастотного сигнала (высокочастотная составляющая распространяется по витой паре несколько быстрее), что приводит к искажению формы сигнала при высоких скоростях передачи. Помехи в линии связи зависят не только от длины, терминаторов и качества самой витой пары. Важно, чтобы линия связи последовательно обходила все приёмопередатчики (топология общей шины). Витая пара не должна иметь длинных отводов — отрезков кабеля для соединения с очередным узлом, кроме случая использования повторителей интерфейса, или при низких скоростях передачи, менее 9600 бит/с.
Подключение
- Контакты RS-485
- Разъем состоит из двух или трех контактов:
A или «+» (TxD+/RxD+), неинвертированный[11]. B или «−» (TxD-/RxD-), инвертированный.
Опциональный общий провод. Соединение общих шин устройств не обязательно, но улучшает устойчивость работы интерфейса. При наличии гальванической развязки не нужен.
Сетевые протоколы, использующие RS-485
- LanDrive
- ProfiBus DP
- ModBus
- DMX512
- HDLC
Промышленные сети, построенные на основе RS-485
- LanDrive
- ProfiBus DP
- ModBus